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Abstract. Old and new puzzles of cosmology are reexamined from the point of view of the quantum theory
of the universe developed here. It is shown that in the proposed approach the difficulties of the standard
cosmology do not arise. The theory predicts the observed dimensions of the non-homogeneities of matter
density and the amplitude of fluctuations of the cosmic background radiation temperature in the Universe
and points to a new quantum mechanism of their origin. The large-scale structure in the Universe is
explained by the growth of non-homogeneities which arise from primordial quantum fluctuations due to
the finite width of the quasistationary states. The theory allows one to obtain the value of the deceleration
parameter, which is in good agreement with the recent SNe Ia measurements. It explains the large value
of the entropy of the Universe and describes other parameters.

1 Introduction

Classical cosmology based on the equations of general rela-
tivity involving the principles of thermodynamics, hydro-
dynamics, plasma theory and field theory comes across
a number of conceptual difficulties known as the prob-
lems of standard big-bang cosmology [1–4]. These are the
problems of the singularity, size, age, flatness, total en-
tropy and total mass of the Universe, large-scale structure,
dark matter, isotropy of the cosmic microwave background
radiation (CMB) and others. Various models were pro-
posed for the solution of these problems. The inflationary
model [1,2] is the most popular one. There are alterna-
tive approaches which use the idea that in the early Uni-
verse the fundamental constants (velocity of light, gravi-
tational constant, fine-structure constant) had values dif-
ferent from the modern ones [5,6].

The observations of type Ia supernovae (SNe Ia) indi-
cate that our Universe is accelerating [7,8]. This conclu-
sion which appeared as partly unexpected for the cosmol-
ogists a few years ago nowadays practically are not called
in question [9]. The concept of a dark energy was pro-
posed for the explanation of this phenomenon [10,11] and
the modern investigations in this field are directed toward
filling of this idea with concrete contents [12–14].

The presence of the cosmological problems points to
the incompleteness of our knowledge of the Universe. It
is generally accepted that the conclusions of the classical
theory of gravity cannot be extrapolated to the very early
epoch. At the Planck scales one must take into account the
quantum effects of both matter and gravitational fields.

There cannot be any doubt that our Universe today
contains structural elements which bear the traces of com-

prehensive quantum processes in preceding epochs. The
small CMB anisotropy and observed large-scale structure
of the Universe [4] can be given as necessary examples (see
below).

The application of basic ideas underlying quantum the-
ory to a system of gravitational and matter fields runs
into difficulties of a fundamental character which do not
depend on the choice of a specific model. The problem of
the separation of the true degrees of freedom under the
construction of quantum gravity becomes of fundamental
importance [15]. It is commonly thought that the main
reason behind such difficulties is that there is no natural
way to define a spacetime event in general covariant theo-
ries [16]. At the present time these difficulties are not over-
come in the most advanced versions of quantum gravity.
Also, quantum gravity cannot rely on experimental data
[17]. Therefore it is appropriate to construct a consistent
quantum theory within the framework of the simple (toy)
exactly soluble cosmological model. As is well known the
model of a homogeneous, isotropic universe (Friedmann–
Robertson–Walker model) describes the general properties
of our Universe good enough. In this paper we study the
model of a quantum universe proposed in [18–21]. It does
not meet with the problems mentioned above and goes
to the FRW model with positive spatial curvature in the
limits of large quantum numbers.

In Sect. 2 we propose the method of removing ambi-
guities in specifying the time variable in the FRW model
by means of a modification of the action functional, and
we find the solutions of the obtained classical field equa-
tions. Section 3 is devoted to the quantum theory for a
system of gravitational and matter fields. Here we formu-
late the equation which is an analog of the Schrödinger
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equation and which turns into the Wheeler–DeWitt one
for the minisuperspace model in a special case. We con-
centrate our attention on the study of the quantum uni-
verse which can be found in a region that is accessible to
a classical motion inside the effective barrier formed by
the interaction of the fields. We discuss the properties of
the wavefunction of the universe and study the universe in
low-lying and highly exited quasistationary states on the
basis of the exact solution of the proposed quantum equa-
tion. In this section we calculate the proper dimension of
the non-homogeneities of the matter density and the am-
plitude of the fluctuations of the CMB temperature in a
highly exited state of the universe and propose a new pos-
sible quantum mechanism of their origin. The formation
and evolution of large-scale structure in the universe are
considered as an effect of the existence of primordial fluc-
tuations due to the finite width of quasistationary states.
The initially scale-invariant (flat) power spectrum of the
perturbations and the spectral index are calculated. The
results are compared with the observed parameters of our
Universe. The flatness of the Universe and the large value
of the entropy today receive a natural explanation. The
observed accelerated expansion emerges as a macroscopic
manifestation of the quantum nature of the Universe.

Throughout this paper the notation Universe (with
capital letter U) relates to our Universe, while universe
(with lower case letter u) corresponds to an arbitrary cos-
mological system of the considered type.

2 Classical description

2.1 Coordinate condition and basic equations

For simplicity we restrict our study to the case of minimal
coupling between geometry and matter. Considering that
scalar fields play a fundamental role both in quantum field
theory and in the cosmology of the early Universe we as-
sume that, originally, the Universe was filled with matter
in the form of a scalar field φ with some potential V (φ).
As we shall see the replacement of the entire set of ac-
tually existing massive fields by some averaged massive
scalar field seems physically justified. We shall consider a
homogeneous and isotropic universe with positive spatial
curvature. Assuming that the field φ is uniform and the
geometry is defined by the Robertson–Walker metric, we
represent the action functional in the conventional form

S =
∫

dη [πa∂ηa+ πφ∂ηφ− H] . (1)

Here η is the time parameter that is related to the syn-
chronous proper time t by the differential equation dt =
Nadη, where N(η) is a function that specifies the time
reference scale, a(η) is a scale factor; πa and πφ are the
momenta canonically conjugate with the variables a and
φ, respectively. The Hamiltonian H is given by

H =
1
2
N

[
−π2a +

2
a2
π2φ − a2 + a4V (φ)

]
≡ NR, (2)

where a is taken in units of the length l = (2/3π)1/2lPl, lPl
is the Planck length, and φ is in units of φ̃ = (3/8πG)1/2.
The energy density will be measured in units (φ̃/l)2 =
(9/16)m4Pl.

The function N plays the role of a Lagrange multiplier,
and the variation δS/δN leads to the constraint equation
R = 0. The structure of the constraint is such that true
dynamical degrees of freedom cannot be singled out ex-
plicitly. In the model considered, this difficulty is reflected
in that the choice of the time variable is ambiguous (the
problem of time). For the choice of the time coordinate to
be unambiguous, the model must be supplemented with
a coordinate condition. When the coordinate condition is
added to the field equations, their solution can be found
for the chosen time variable. However, this method of re-
moving ambiguities in specifying the time variable does
not solve the problem of a quantum description. There-
fore we shall use another approach and remove the above
ambiguity with the aid of a coordinate condition imposed
prior to varying the action functional. We will choose the
coordinate condition in the form

g00 (∂ηT )
2 =

1
a2
, or ∂ηT = N, (3)

where T is the privileged time coordinate, and include it in
the action functional with the aid of a Lagrange multiplier
P ,

S =
∫

dη [πa∂ηa+ πφ∂ηφ+ P∂ηT − H] , (4)

where
H = N [P + R] (5)

is the new Hamiltonian. The constraint equation reduces
to the form

P + R = 0. (6)

The parameter T can be used as an independent variable
for the description of the evolution of the universe. The
corresponding canonical equations reduce to the form

∂Ta = −πa, ∂Tπa =
2
a3
π2φ + a− 2a3V (φ),

∂Tφ =
2
a2
πφ, ∂Tπφ = −a4

2
dV (φ)
dφ

,

∂TT = 1, ∂TP = 0. (7)

Integrating the equation for P , we obtain P = E/2, where
E is a constant and the multiplier 1/2 is introduced for
further convenience. The full set of equations for the model
in question becomes [18,19]

(∂Ta)
2 − a2

2
(∂Tφ)

2 + U = E, (8)

∂2Tφ+
2
a
(∂Ta) (∂Tφ) + a2

dV
dφ

= 0, (9)

where U = a2 − a4V (φ). Equation (8) represents the Ein-
stein equation for the

(
0
0
)
component, while (9) is the
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equation of motion Tµ
0;µ = 0 for φ, where Tµ

ν is the energy-
momentum tensor of the scalar field:

T 00 =
1
2a2

(∂Tφ)
2 + V,

T 11 = T 22 = T 33 = − 1
2a2

(∂Tφ)
2 + V,

Tµ
ν = 0 for µ �= ν. (10)

From the analysis of the Einstein equations for this
model it follows that inclusion of the coordinate condition
(3) in the action functional is the origin of the additional
energy-momentum tensor in these equations,

T̃ 00 =
E

a4
, T̃ 11 = T̃ 22 = T̃ 33 = − E

3a4
,

T̃µ
ν = 0 for µ �= ν, (11)

which can be interpreted as the energy-momentum tensor
of radiation. In the ordinary units E is measured in �.
The choice of radiation as the matter reference frame is
natural for the case in which relativistic matter (electro-
magnetic radiation, neutrino radiation, etc.) is dominant
at the early stage of evolution of the Universe. If our Uni-
verse were described by the model specified by the action
functional (4), it would be possible to relate the above
radiation at the present era to the CMB.

2.2 Solutions

A feature peculiar to the model in question is that it in-
volves a barrier in the variable a described by the function
U . This barrier is formed by the interaction of the scalar
and gravitational fields. It exists for any form of the pos-
itive definite scalar-field potential V (φ) and becomes im-
penetrable on the side of small a in the limit V → 0. In
the general case (E �= 0) there are two regions accessible
to classical motion: inside the barrier (a ≤ a1) and out-
side the barrier (a ≥ a2), where a1 and a2 are the turning
points (a1 < a2) specified by the condition U = E. The
set of (8) and (9) determines a and φ as functions of time
T at given V (φ). When the rate at which the scalar field
changes is much smaller than the rate of the universe evo-
lution, i.e. (∂tφ)2 	 2H2, where H = ∂ta/a is the Hubble
constant, and |∂2t φ| 	 |dV/dφ|, (8) and (9) become

(∂Ta)
2 + U = ε, (12)

3
a
H∂Tφ = −dV

dφ
, (13)

where ε and U depend parametrically on φ. In the zero-
order approximation ε = E. The solution to (8) can be
refined by taking into account a slow variation of the field
φ with the aid of the equation

−a2

2
(∂Tφ)

2 + ε(φ) = E, (14)

where ε stands for a potential term.

The solutions of (13) which determine the scalar-field
dynamics were studied in the inflationary models [2,4].
The solution of (12) at fixed value of φ can be represented
in the form

a(t) =
[
1
2V

+
y

4V
exp

{
2
√
V (t− tin)

}
+

1 − 4V ε
4V y

exp
{

−2
√
V (t− tin)

}]1/2
, (15)

where we denote

y = 2
√
V (ε− α2 + α4V ) + 2V α2 − 1. (16)

Here α = a(tin) gives the initial condition for some in-
stant of time t = tin. At a(0) = 0 and a(tin) = a2 the
corresponding scale factors are given in [18,19]. The so-
lution (15) shows that in the region a > a2 the universe
expands in the de Sitter mode from the point a = a2,
but in the region a < a1 it evolves as a(t) � [2ε1/2t]1/2

for 2V 1/2t 	 1, which describes the evolution of the uni-
verse of which the density was dominated by radiation
and as a(t) = a1 − ζ(t) with ζ(t) ∼ t2 near the point
of maximal expansion a = a1. The estimations for a1
demonstrate that at small enough V the value a ∼ a1
can reach the modern values of the scale factor in our
Universe. So, for the state of the universe with ε ∼ 1/4V
and V ∼ 10−5GeV/cm3 = 6.1×10−123 (the mean matter-
energy density in our Universe at the present era) we have
a1 ∼ (1/2V )1/2 ∼ 1061 ∼ 1028 cm.

In the extreme case of E = 0, where there is no radia-
tion, the region a ≤ a1 contracts to the point a = 0, and
the expansion can proceed only from the point a = a2 and
the region a < a2 cannot be treated in terms of classical
theory. Such models were widely enough studied by many
authors (see e.g. [2,3,22,23]).

We concentrate our attention on the study of the prop-
erties of the universe which is characterized by non-zero
values of E (and ε) at the initial instant of time and can
be found in a region that is accessible to a classical motion
inside the barrier.

The evolution of the universe depends on the initial
distribution of the classical field φ and its subsequent be-
havior as a function of time. The solutions of (13) for V ∼
φn give evidence that the φ decreases with time [2,3]. From
(9) and (14), it follows that the inequality ∂TV +∂T ε/a

4 <
0 holds in the expanding universe. If V decreases with
time, ε can increase. Let us estimate ε by using the rela-
tion ε � T̃ 00 a

4. In our Universe, with a ∼ 1028 cm, the main
contribution to the radiation-energy density comes from
the CMB with energy density ρ0γ ∼ 10−10GeV/cm3. Set-
ting T̃ 00 = ρ0γ , we find that, in the present era, the result is
ε = εγ ∼ 10117�. In the early Universe with a ∼ 10−33 cm
and with the Planck energy density we have ε ∼ �. This
indicates that ε should increase in the evolution process.
This increase can be explained by a considerable redistri-
bution of energy between the scalar field and radiation at
the initial stage of Universe existence. Quantum theory is
able to account for this phenomenon in a natural way as
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a spontaneous transition from one quantum state of the
universe to another.

Taking into consideration the mechanism of quantum
tunneling through the barrier and competing process of
the reduction of V with time (which leads to the growth of
the barrier U in width and height) allows one to reexamine
old and new puzzles of cosmology from the point of view
of quantum theory.

3 Quantum theory

3.1 Quantization and properties of wavefunction

In quantum theory, the constraint equation (6) comes to
be a constraint on the wavefunction that describes the
universe filled with a scalar field and radiation [18–20]

2i∂TΨ =
[
∂2a − 2

a2
∂2φ − U

]
Ψ. (17)

Here the order parameter is assumed to be zero [2,22,
23]. This equation represents an analog of the Schrödinger
equation with a Hamiltonian independent of the time vari-
able T . One can introduce a positive definite scalar prod-
uct 〈Ψ |Ψ〉 < ∞ and specify the norm of a state. This makes
it possible to define a Hilbert space of physical states and
to construct quantum mechanics for the model of the uni-
verse being considered.

A solution to (17) can be represented in the integral
form

Ψ(a, φ, T ) =
∫ ∞

−∞
dEe(i/2)ETC(E)ψE(a, φ), (18)

where the function C(E) characterizes the E distribution
of the states of the universe at the instant T = 0, while
ψE(a, φ) and E are, respectively, the eigenfunctions and
the eigenvalues for the equation(

−∂2a +
2
a2
∂2φ + U − E

)
ψE = 0. (19)

This equation turns into the famous Wheeler–DeWitt
equation for the minisuperspace model [2,19,22] in the
special case E = 0.

A solution to (19) can be represented by

ψE(a, φ) =
∫ ∞

−∞
dεϕε(a, φ)fε(φ;E), (20)

where ϕε and ε are the eigenfunctions and the eigenvalues
of the equation (−∂2a + U

)
ϕε = εϕε. (21)

For the slow-roll potential V , when |d lnV/dφ|2 	 1, the
ϕε describes the universe in the adiabatic approximation
and corresponds to continuum states at a fixed value of
the field φ. The functions ϕε can be normalized to the
delta function δ(ε−ε′). Their form greatly depends on the

value of ε. The quantities fε(φ;E) can be interpreted as
the amplitudes of the probability that the universe is in
the state with the given values of φ and E [20].

Since the potential U has the finite height Umax =
1/4V and finite width, quantum tunneling through the
region a1 ≤ a ≤ a2 of the potential barrier is possible. As
a result it follows that stationary states cannot be realized
in the region a ≤ a1. If, however, V (φ) 	 1, quasistation-
ary states with lifetimes exceeding the Planck time can
exist within the barrier. The positions εn and widths Γn

of such states are determined by the solutions to (21) for
ϕε that satisfy the boundary condition in the form of a
wave traveling toward greater values of a. Let us describe
these states.

We choose some value R > a2. Then ϕε(a, φ) at fixed
φ can be represented in the form

ϕε(a) = A(ε)ϕ(0)ε (a) for 0 < a < R, (22)

and

ϕε(a) =
1√
2π

[
ϕ(−)ε (a) − S(ε)ϕ(+)ε (a)

]
(23)

for a > R,

where A(ε) and S(ε) are the amplitudes depending on ε,
ϕ
(0)
ε is the solution that is regular at the point a = 0,

normalized to unity, and weakly dependent on ε, while
ϕ
(−)
ε (a) and ϕ

(+)
ε (a) describe the wave “incident” upon

the barrier (the contracting universe) and the “outgoing”
wave (the expanding universe) respectively. Beyond the
turning points the WKB approximation is valid so that
one can write

ϕ(±)ε (a) =
1√

2(ε− U)1/4

× exp
{

∓i
∫ a

a2

√
ε− Uda± iπ

4

}
. (24)

The amplitude A(ε) has a pole in the complex plane of ε
at ε = εn + iΓn, and for a < R the main contribution to
the integral (20) over the interval −∞ < ε < Umax comes
from the values ε ≈ εn. The amplitude S(ε) is an analog
of the S-matrix [24,25].

The estimation

|ϕεn |a<R ∼
(

2
RΓn

)1/2
|ϕεn |a>R (25)

shows that at Γn 	 1 the wavefunction ϕε(a) has a sharp
peak for ε = εn and is concentrated mainly in the region
limited by the barrier. If ε �= εn then for the maximum
value of the function ϕε we obtain

|ϕε|2max ∼ Γn

R

√
ε

(ε− εn)2
|ϕε|2a=a3

, (26)

where U(a3) = 0 and a3 �= 0. From this it follows that
for Γn 	 1 the wavefunction reaches large values on the
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Table 1. Parameters εn and Γn for various values of the po-
tential V . At V = 5.6 × 10−3m4

Pl there are six levels in the
system, three of them are displayed

V (m4
Pl) n εn (�) Γn (t−1

Pl )

4.5 × 10−2 0 1.31 6.7 × 10−1

2.8 × 10−2 0 1.40 1.3 × 10−2

1.7 × 10−2 0 1.45 4.3 × 10−6

1 3.17 2.2 × 10−2

1.1 × 10−2 0 1.47 1.5 × 10−10

1 3.30 2.2 × 10−6

2 4.94 6.5 × 10−3

5.6 × 10−3 0 1.49 2.2 × 10−24

1 3.40 2.2 × 10−19

2 5.26 2.2 × 10−15

boundary of the barrier, while under the barrier ϕε ∼
O(Γn).

In the limit of an impenetrable barrier, the function
ϕn = ϕ

(0)
εn reduces to the wavefunction of a stationary

state with a definite value of εn. During the time inter-
val ∆T < 1/Γn the possibility that the state decays can
be disregarded. This corresponds to defining a quasista-
tionary state as that which takes the place of a stationary
state when the probability of its decay becomes non-zero
[25].

3.2 The universe in low-lying quasistationary states

Calculation of the parameters εn, Γn of the quantum state
of the universe can be done by both perturbation theory
by considering the interaction a4V (φ) as a small pertur-
bation against a2 (in the region a < a1 we have a2V < 1)
and direct integration of (21) [18,19]. Such calculations
show that the first level with ε0 = 2.62 = 1.31� and Γ0 =
0.31 = 0.67t−1Pl emerges at V = 0.08 = 4.5 × 10−2m4Pl.

In the early universe, the quantity V (φ) specifies the
vacuum energy density. The investigations within infla-
tionary models suggest that the potential V (φ(t)) of the
classical scalar field decreases with time. As the poten-
tial V (φ) decreases, the number of quantum states in the
prebarrier region increases but the decay probability de-
creases exponentially. The results of the calculations are
summarized in Table 1.

Let us note that the quantum fluctuations of φ(t) in an
exponentially expanding universe can result in the quan-
tity φ(t) and the potential V ∼ φn being increasing [2,3].
Then the quantum states of the universe in the prebarrier
region cannot form. This case is not interesting for us and
it will not be considered.

The calculations demonstrate that the first instants of
the existence of the universe (counted from the moment of
formation of the first quasistationary state) are especially
favorable for its tunneling through the potential barrier U .
The emergence of new levels results in the appearance of
competition between the tunneling processes and transi-

20 40 60 80 100
∆T
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0.01

0.012
W10

Wdec

Fig. 1. Probabilities W10 and Wdec versus the time interval
∆T = T − T0 taken in units of the Planck time at V = 1.7 ×
10−2m4

Pl

tions between the states. In the approximation of a slowly
varying field φ, transitions in the system being studied
can be considered as ones that occur between the states
|n〉 of an isotropic oscillator with zero orbital angular mo-
mentum which are induced by the interaction a4V . In a
stricter approach which takes into account the variations
of V (φ) the transitions will be carried out at the expense
of the gradient of the potential V (φ) which follows from
the quantization of (6) taking into account the evolution
of the field φ in the approximation (13) [24].

Considering the processes of transitions from some ini-
tial state m(T0) to the final state n(T ) (including the case
m = n) and tunneling through the barrier from the final
state as independent, one can calculate the probability
Wnm of a transition between the states m and n:

Wnm ≈ |〈ϕn|UI |ϕm〉|2 exp{−Γn∆T}, (27)

where ∆T = T − T0 and UI is the evolution operator
in the interaction representation [26]. In the case of a
two-level system the computation of the total probabil-
ity of universe decay, Wdec = 1 − (W00 +W10), and the
probability W10 demonstrates that over the time interval
∆T � 50tPl, the transitions in the system predominate
and only for ∆T ∼ 102tPl the probability that the uni-
verse tunnels through the barrier becomes commensurate
with the probability that it undergoes the 0 → 1 transition
in the prebarrier region (see Fig. 1).

Since the rate at which the level width Γn tends to
zero is greater than the rate at which the V decreases,
its reduction with time results in the transitions becom-
ing much more probable than tunnel decays, in which case
the former fully determine the evolution of the quantum
universe in the prebarrier region. If the universe has not
tunneled through the barrier before the potential of the
field φ decreases to a value V < 0.01 = 5.6 × 10−3m4Pl,
a sufficiently large number of levels such that the proba-
bilities of decays from them can be neglected are formed
in the system. Calculating the amplitudes of transitions
over the time interval ∆T we find that the n → n + 1
transition is more probable than the n → n − 1, n + 2
transitions. This means that the quantum universe can
undergo transitions to ever higher levels with a non-zero
probability. Since the expectation value of the scale fac-
tor ān = 〈ϕn|a|ϕn〉 ∼ n1/2, then it can be concluded that
the characteristic size ān of the universe that did not un-
dergo a tunnel decay increases as it is excited to higher
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levels, i.e. the quantum universe being with respect to a
in a classically accessible region before the turning point
a1 can evolve so that ān will increase with time. This can
be interpreted as an expansion of the universe. The prob-
ability that, in the course of time, the universe will occur
in the region a > a2 outside the barrier is negligibly small.
In the limit V → 0, the universe is completely locked in
the region within the barrier.

The universe in the lowest state with n = 0 has a
“proper dimension” d ≈ πā0 ≈ 3 × 10−33 cm, the to-
tal matter-energy density ρ ≈ 0.65m4Pl, and the problem
of the initial cosmological singularity does not emerge.
The classical turning points are a1 � 1.4 × 10−33 cm and
a2 � 2.2×10−33 cm. The value of a1 determines the maxi-
mal dimension of the universe occurring in the lowest state
in prebarrier region, while a2 characterizes its initial di-
mension after tunneling from this state. If a quantum uni-
verse tunnels from the states with n > 0, the dimensions
of the region from which tunneling occurs can consider-
ably exceed the Planck length. The constants E and V
appearing in the Einstein equations will be determined by
the corresponding quantum stage.

Thus it turned out that the quantum universe orig-
inally filled with radiation and matter in the form of a
scalar field with a potential V (φ(t)) decreasing with time
has a non-zero probability to evolve remaining in the pre-
barrier region. The expansion here is ensured by the tran-
sitions from lower states to higher states by means of the
interaction between gravitational and scalar fields. The
system can be found in the highly excited states with
n � 1 as a result of such an evolution. In states with
n � 1 the potential V 	 1 and Γn ∼ 0. The state of the
universe will be characterized by the quantum number n
which determines its geometrical properties and the new
quantum number s responsible for the state of matter.

3.3 Highly excited states

The potential of φ will be chosen in the form V (φ) =
(m2/2)φ2. From the condition V 	 1, it follows that the
mass of the field must be constrained by the condition
m 	 m2Pl/|φ|. In this case the states of the matter are de-
termined by the solutions of the Schrödinger equation for
a harmonic oscillator at given value of n [20]. It describes
the oscillations of φ near the minimum of the potential
V (φ). This process can be interpreted as the production
of particles. At E = 0, a similar mechanism leads to the
production of particles by the inflaton field, which is iden-
tified with the scalar field φ [2]. Assuming as before that
the V (φ) is a slow-roll potential we find the condition of
quantization of E:

E = 2N − (2N)1/2(2s+ 1)m, (28)

where N = 2n+1, and the values of the quantum number
s are restricted by the inequality s + 1/2 	 (2N3)1/2/m
which reflects the fact that the mass m of the produced
particles is finite. For small s the equality E ≈ 2N holds to
a high precision, so that the universe is dominated by radi-
ation. A transition from radiation-dominated universe to a

universe where matter (in the form of particles produced
by the field φ) prevails occurs when the second term in
(28) becomes commensurate with the first one. The phys-
ical interpretation of the condition (28) will be considered
below.

For a universe with the given quantum numbers n � 1
and s � 1 the wavefunction ψE has the form [20]

ψE(a, φ) = ϕn(a)fns(φ), (29)

where

ϕn(a) =
(

2
N

)1/4
cos
(√

2Na− Nπ

2

)
,

fns(φ) =
(
m(2N)3/2

2(2s+ 1)

)1/4
× cos

(√
2s+ 1(2m2N3)1/4φ− sπ

2

)
.

This wavefunction is normalized to unity with allowance
for the fact that the probability of finding the universe in
the region a > a2 is negligibly small.

The condition (28) can be rewritten in terms of
“observable” quantities: the cosmic scale factor 〈a〉 =
(N/2)1/2, where averaging was performed over the state
(29), and the total mass of the matter is M = m(s+1/2),

E = 4〈a〉 [〈a〉 −M ] . (30)

The classical universe is characterized by the total energy
density ρ = T 00 + T̃ 00 , where T

0
0 and T̃ 00 are the energy-

momentum tensors of the scalar field (10) and radiation
(11) respectively. Replacing all quantities by correspond-
ing operators for the quantum universe we set ρtot = 〈ρ〉.
This gives ρtot = ρsub + ρrad, where

ρsub =
193
12

M

〈a〉3 and ρrad =
E

〈a〉4 . (31)

Here, in accordance with the Ehrenfest theorem, we as-
sume that the expectation value 〈a〉 follows the laws of
classical theory and the expectation values of the func-
tions T 00 and T̃ 00 of a can be replaced by the functions of
〈a〉.

In the case when ρsub � ρrad we have 〈a〉 = M . This
relation holds to a high precision ∼ 10−5 in the observed
part of our Universe, where 〈a〉 ∼ 1061 ∼ 1028 cm and
M ∼ 1061 ∼ 1056 g. The quantum numbers of such a
universe are n ∼ 〈a〉2 ∼ 10122 and s ∼ 〈a〉/m ∼ 1080,
taking the proton mass for m. The value of n agrees with
existing estimates for our Universe, while s is equal to the
equivalent number of baryons [22,27].

Thus for the matter-dominant era we have the follow-
ing relation between 〈a〉 and ρsub:

〈a〉 =
(
193
12

1
ρsub

)1/2
. (32)

On the other hand in accordance with assumptions made
above in the universe with positive spatial curvature in
this era the following equality must hold [27,28]:
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〈a〉 =
(

Ω0
Ω0 − 1

1
ρsub

)1/2
, (33)

where Ω0 = ρsub/ρc is the matter density in units of the
critical density ρc. From (32) and (33) we find Ω0 = 1.07.
That is, the geometry of the universe with n � 1 and
s � 1 is close to the Euclidean geometry (a flat universe).

If one neglects the contribution from the kinetic term
of the scalar field (π2φ = 0) then the corresponding Ω0 �
0.08. This value exceeds the contribution from the lumi-
nous matter (stars and associated material) [4] and it is
close to the value for the minimum amount of dark matter
required to explain the flat rotation curves of spiral galax-
ies. Although the potential V (φ) undergoes only small
variations in response to changes in the field φ, the field
φ itself changes fast, oscillating about the point φ = 0,
so that the approximation in which π2φ = 0 is invalid.
The application of the present model in this approxima-
tion would result in a radiation-dominated universe; that
is, it would not feature a mechanism capable of filling it
with matter after a slow descent of the potential V (φ) to
the equilibrium position, which corresponds to the true
vacuum.

It is interesting to find the physical interpretation of
(30). Passing on to the ordinary physical units we rewrite
it in the form

a = GMtot, (34)

whereMtot =M+Urad, Urad ≡ E/2a. It is easy to see that
(34) is the condition of the equality between the proper
gravitational energy of the thin spherical layer (with the
total mass Mtot) on the sphere with radius a and the sum
of the energies of particlesM and energy of radiation Urad.
In the modern era M ∼ 1080GeV � Urad ∼ 1075GeV. If
we extrapolate (34) on the Planck era and set a = lPl then
Mtot = mPl. For the lowest quantum state we find that
Urad ≈ mPl/2. Since s = 0 the parameter m ≈ mPl. This
means that the vacuum energy of the scalar field and the
energy of radiation make a comparable contribution to the
total energy of the universe with n = 0. In this state the
scalar field |φ| ≈ 0.3mPl.

3.4 The non-homogeneities of the matter density

The approach developed here makes it possible to obtain
realistic estimates for the proper dimensions of the non-
homogeneities of the matter density, for the amplitude of
fluctuations of the CMB temperature and points to a new
possible mechanism of their origin, namely by means of
finite values of the widths of quasistationary states. For a
small, but finite value of the width Γ the quasistationary
state does not possess a definite value of ε. The corre-
sponding uncertainty δε can serve as the source of fluc-
tuations of the metric δa [20]. By associating ε + δε with
the scale factor a+ δa and by using the solution (15) for
a(0) = 0 we find the amplitude of fluctuations of the scale
factor in the form

δa

a
=

1
4

δε/ε

1 − tanh(
√
V t)/2

√
V ε

. (35)

Since δε � Γ , the fluctuations δa that were generated at
the early stage of the evolution of the Universe will take
the largest values. For the lowest quasistationary state
with ε = 2.62, δε � 0.31, V = 0.08, at t ∼ 1 we obtain

δa

a
� 0.04. (36)

Since the dimension of large-scale fluctuations changed in
direct proportion to a, this relation has remained valid up
to the present time. For the current value of a ∼ 1028 cm
we find that δa � 130Mpc. On this order of magnitude,
the above value corresponds to the scale of superclusters
of galaxies. Smaller values of δε are peculiar to quantum
states with smaller V . The fluctuations δa corresponding
to them are smaller than (36) and are expected to mani-
fest themselves against the background of the large-scale
structure. They can be associated with clusters of galaxies,
galaxies themselves, and clusters of stars.

3.5 Fluctuations of the CMB temperature

The energy density of radiation can be expressed by

ρrad =
4π4

30
g∗T4, (37)

where T is the temperature and g∗ counts the total num-
ber of effectively massless degrees of freedom [1,2,4]. Using
the relation (31) for ρrad we obtain

E =
4π4

30
g∗ (aT)

4
, (38)

where we omit the brackets for simplicity. Leaving the
main terms we can write

δT
T

� 1
4
δε

ε
− δa

a
. (39)

For V 1/2t 	 1 follows the estimation for the amplitude

δT
T

� t

2
√
ε

δa

a
. (40)

For the time t ∼ 105 yr corresponding to the instant of
recombination of the primary plasma (separation of ra-
diation from matter), and for the observed value of ε =
2.6 × 10117�, for (36) we find

δT
T

� 2.8 × 10−5. (41)

Here V 1/2t ∼ 0.7 × 10−3.
Upon recombination, the fluctuations of the tempera-

ture undergo no changes; therefore, measurement of the
quantity δT/T for the present era furnishes information
about the Universe at the instant of the last interaction
of radiation with matter. The estimate in (41) is in good
agreement with experimental data from which the trivial
dipole term ∼ 10−3 caused by the solar system motion
was subtracted [29].
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3.6 Large-scale structure formation

The problem of formation of structure in the Universe is
non-trivial in any theoretical scheme [3,30]. In our ap-
proach the quantities (36) and (41) set a restriction from
above on the possible values of the amplitudes of fluctua-
tions of the cosmic scale factor and the CMB temperature.
In order to describe the power spectrum of the density per-
turbations in the universe and the angular structure of the
CMB anisotropies in the context of the proposed approach
it is necessary to have data about the spatial distribution
of the fluctuations δε. For discussion we shall consider the
mechanism of large-scale structure formation in the uni-
verse based on the fluctuations δε which are distributed
in space randomly.

Let us assume that the perturbations δε depend on co-
moving space coordinates x = (x1, x2, x3). Below we shall
suppose that all perturbations “live” in flat space [31] and
ε-perturbations δε(x) can be expanded in a Fourier series.
According to Sect. 3.1 the state of the universe is charac-
terized by the position ε and width Γ of the level (here, for
simplicity, the index n which specifies the number of the
level is omitted). We assume that for given cosmic scale
factor a the fluctuations δε(x) have the form of a Gaussian
distribution in the coordinates (x1, x2, x3) near the fixed
values x0 = (x10, x

2
0, x

3
0),

δε(x) =
Γ

(2π)3/2σ3
e−(x−x0)2/2σ2

, (42)

where the dispersions σ2 are supposed to be equal for three
random values x1, x2, x3. This distribution is normalized
as follows: ∫

dxδε(x) = Γ, (43)

where the integral is taken over space. Then the contrast
δε(x) ≡ δε(x)/ε averaged over the whole space is

〈δε(x)〉space = Γ

ε
. (44)

For the averaged modulus-squared of the contrast δε(x)
we have

〈|δε(x)|2〉space =
∫

dk

(2π)3
P (k), (45)

where P (k) = |δε(k)|2 is the power spectrum and δε(k)
is the Fourier component of δε(x). For a homogeneous,
isotropic universe δε(k) depends only on the wavenumber
k. From P (k) one can pass to the spectrum

Pε(k) =
k3

2π2
P (k), (46)

which is the measure of the ε-perturbations typical for the
scale of the wavelengths λ = 2π/k [30–32]. From (45) we
obtain

〈|δε(x)|2〉space =
∫ ∞

0

dk
k

Pε(k) = 4π
∫ ∞

0

dλ
λ

P (2π/λ)
λ3

.

(47)

Let us introduce the spectral index n(k) of the scalar
ε-perturbations as follows:

n(k) =
d lnP (k)
d ln k

. (48)

The Taylor expansion of the spectral index about some
fixed wavenumber k0,

n(k) = n(k0) +
(
d lnn(k)
d ln k

)
k0

ln
k

k0
+ . . . , (49)

gives the following representation for the spectrum:

P (k) = P (k0)
(
k

k0

)n(k0)+(1/2)(dn/d ln k)|k0 ln(k/k0)+...

(50)
It shows that in a power-law approximation a scale-inva-
riant Harrison–Zeldovich (HZ) spectrum [33,34] corres-
ponds to the case

n(k0) = 1. (51)

The spectrum P (k) can be expressed via the contrast
δε(x)

P (k) =
∣∣∣∣∫ dx

sin(kx)
kx

δε(x)
∣∣∣∣2 . (52)

Then the spectral index is

n(k) = 2

∣∣∣∣∣∣∣
∫
dx cos(kx)δε(x)∫
dx

sin(kx)
kx

δε(x)

∣∣∣∣∣∣∣− 2. (53)

Substituting (42) into (52) and (53) in the limit of small
dispersions σ2 we find the following simple expressions for
the spectrum and the spectral index

P (k) =
(
Γ

ε

)2 ∣∣∣∣ sin(kx0)kx0

∣∣∣∣2 , (54)

n(k) = 2kx0| cot(kx0)| − 2, (55)

where x0 = |x0|. As is known [31,32], on a large scale the
fundamental spectrum is consistent with the HZ slope.
In the early epoch (51) and (55) define the primordial
spectrum of ε-perturbations with wavelengths λi = 2π/ki

0
equal to

λ1 = 2.9x0, λ2 = 1.4x0, λ3 = 1.3x0, λ4 = 0.82x0,
λ5 = 0.78x0, λ6 = 0.58x0, λ7 = 0.56x0, etc. (56)

In accordance with generally accepted views on the mech-
anisms of the formation of visible large-scale structure in
the Universe [30,35] one should choose the parameter x0
equal to the horizon which is determined by the width Γ
as x0 = 1/Γ . Since the primordial spectrum is defined by
the discrete set of wavenumbers ki

0, the HZ spectrum itself
can be written as the sum over all possible roots (56) of
the transcendental equation (51),

PHZ(k) =
∑

i

P (ki
0)k

−2δ(k − ki
0). (57)
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Substituting (57) into (47) for the effective value of the
amplitude of ε-perturbations determined by the root mean
square of the contrast δε(x) we obtain

δHZε =
1√
2π

(∑
i

P (ki
0)

)1/2
. (58)

For the lowest state with ε = 2.62, Γ = 0.31 and the
wavelengths (56) from (54) and (58) for the amplitude of
the ε-perturbations of the HZ spectrum we find

δPlε ∼ 10−2. (59)

The same estimation can be obtained if one makes a tran-
sition from the integral in (45) to a sum over the vector
k in a cubic lattice with spacing 1/x0 = Γ and then sums
over the possible values of k for the HZ spectrum.

The main contribution to (59) is made by the wave-
lengths λi > x0. The amplitude (59) practically does not
change up to the instant of recombination. Indeed, ac-
cording to (54) we have δPlε < (Γ/ε) ∼ 10−1. Taking into
account that the amplitude of the a-perturbations δa/a
remains constant during the evolution of the universe (see
Sect. 3.4) for the instant of recombination from (35) we
find that δdecε < 10−1; hence one can assume that the
fluctuations (59) also do not change up to the instant of
separation of the radiation from the matter, so that

δdecε ∼ 10−2. (60)

In order to relate the amplitude of ε-perturbations with
the density contrast δρ ≡ δρ/ρ the expression for the en-
ergy density ρ = T 00 + T̃ 00 is rewritten in the form

ρ = V +
ε

a4
, (61)

where we have used (14). In the radiation-dominant era
a � [2ε1/2t]1/2 and

ε

a4
� 1

4t2
=

3
32πGt2

= ρc. (62)

Here we show in an explicit form the relation between
our dimensionless and ordinary units. Since in this era
to very high precision ρ � ρc [2,3] the potential V in
(61) can be neglected. Then at given a for an effective
value of the energy density perturbations at the instant of
recombination we obtain the following estimation:

δdecρ ≈ δdecε ∼ 10−2. (63)

After matter–radiation equality, the universe begins a
matter-dominated phase and the density contrast δρ in-
creases according to the known law δρ ∼ (1+ z)−1, where
z is the redshift. As far as at the instant of the recombi-
nation z = zdec � 103 the perturbations (63) guarantee
that we obtain the value δρ ∼ 1 by now [3,33].

Thus in the early Universe primordial ε-perturbations
which are randomly distributed in space can give the nec-
essary value of the energy density fluctuations during ra-
diation domination. Non-homogeneities which arise here

can grow up to the observed large-scale structures (galax-
ies and their clusters) in the Universe following the stan-
dard laws of general relativity. At the same time there is
no contradiction between the values (63) and (41). The
amplitude of fluctuations δT/T according to (40) takes
into account the value of ε which has a contribution only
from the “visible” CMB energy density, whereas the value
(63) effectively includes the contribution from dark mat-
ter in the form of a scalar field φ via the parameters ε and
Γ which are determined from (21).

Primordial fluctuations of δε(x) present one of the pos-
sible new mechanisms which can contribute to the over-
all picture of the formation of large-scale structure in the
Universe.

It is interesting to clear up the possibility of the de-
scription of the observed CMB anisotropy on the basis
of the ε-perturbations. This problem needs detailed study
and we shall consider it elsewhere. In AppendixA we give
some basic formulas in order to demonstrate in general a
possible way of development of our ideas in this direction.

3.7 Entropy

The total entropy S per comoving volume 2π2a3 [1,2,4]
can be expressed

S =
4π4

45
g∗s (aT)

3
, (64)

where g∗s can be replaced by g∗ for most of the history
of the Universe when all particles species had a common
temperature.

From (38) and (64) there follows a simple relation be-
tween E and the total entropy S:

E

S
=

3
2
g∗
g∗s

aT. (65)

For the adiabatic expansion, aT = const, the ratio E/S is
conserved. Excluding aT from (65) we obtain the relation

S4 =
(
2
3

)5
π4

5
g∗s

(
g∗s

g∗

)3
E3. (66)

In the era with T ∼ 1019GeV we have S ∼ 1, but at the
present time for T ∼ 10−13GeV the entropy S ∼ 1088.
The large value of E today explains the large value of the
entropy of the Universe.

3.8 Acceleration or deceleration?

Recent measurements [7,8] indicate that today the Uni-
verse is accelerating. Let us note that another possible
explanation of the observed dimming of the type Ia su-
pernovae at redshifts z ∼ 0.5 is an unexpected supernova
luminosity evolution [36]. At present the first interpreta-
tion of the observed phenomenon is considered to be more
preferable.
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In terms of classical cosmology the accelerated expan-
sion is described by negative values of the deceleration
parameter

q = − 1
H2

∂2t a

a
. (67)

In order to match the experimental data to the theory
the concept of dark energy was proposed which is nearly
smoothly distributed in space. This dark energy compo-
nent must have a negative pressure that overcomes the
gravitational self-attraction of matter and causes the ac-
celerated expansion of the Universe. It is commonly as-
sumed that the vacuum energy density in the form of a
non-zero cosmological constant or due to a slow-roll scalar
field called “quintessence” may be responsible for the dark
energy [10,12,13].

Let us examine this problem from the point of view
of the approach developed in this paper. To this end we
rewrite (67) in the form

q = 1 + a
∂Tπa

π2a
. (68)

Bearing in mind the canonical equation for ∂Tπa from
(7) and having differentiated (19) with respect to a, we
find that the derivative −∂Tπa must be substituted by
the quantum mechanical operator

Π ≡ 1
2

(
−∂2a +

2
a2
∂2φ + a2 − a4V − E

)
∂a. (69)

Then according to quantum mechanical principles the
quantum analog of the deceleration parameter can be cal-
culated:

〈q〉 = 1 − 〈aΠ〉
〈π2a〉 , (70)

where averaging is performed over states ψE , and it is
assumed that off-diagonal matrix elements from q vanish.
(This corresponds to the representation of the deceleration
parameter by a scalar quantity.)

In a state with large quantum numbers n � 1 and
s � 1, for a matter-dominant universe, where E/4〈a〉2 	
1, using the wavefunction (29) we obtain

〈q〉 = 1 − 1
2

[
cos
(
2π〈a〉2)+ 2

3
cos
(
(2π − 8) 〈a〉2)] . (71)

The expression in square brackets in (71) which contains
two cosines rapidly oscillates with a small period ∼ 2lPl.
Averaging (71) over a small interval near some fixed value
of 〈a〉2 we have

〈q〉 = 1. (72)

This value can be associated with the deceleration param-
eter in classical theory. It agrees with the classical concep-
tions of general relativity about the expansion rate of the
Universe in the matter-dominated era with zero cosmo-
logical constant [27,28].

The quantity (72) does not take into account the quan-
tum fluctuations of the scale factor

∆a =
√

〈a2〉 − 〈a〉2 (73)

that specify the root-mean-square deflection of the dis-
tribution |ψE(a, φ)|2 as a function of a. In this case ψE

represents the wave packet which describes the universe
being localized in space a near the expectation value 〈a〉
with deflection ∆a. We shall show that at certain con-
ditions (parameters of the universe) the fluctuations ∆a
can essentially affect the character of the expansion of the
universe. It can provide in particular the accelerated ex-
pansion observed nowadays [7,8].

We shall denote the scale factor taking into account
the fluctuations∆a(t) as ã(t), while the fluctuations them-
selves will be associated with the quantity ∆a(t) = ã(t)−
a(t), where a(t) is the scale factor without regard for fluc-
tuations of the considered type (73). Fixing some instant
t0 for small intervals ∆t = t− t0 we can write the expan-
sion [27]

a(t) = a0

[
1 +H0∆t− 1

2
q0H

2
0∆t

2 +
1
6
s0H

3
0∆t

3 + . . .

]
,

(74)
where s0 ≡ (1/H3

0 )(∂
3
t a/a)0 and the subscript 0 indicates

that corresponding values are taken at t = t0. A similar
series can be written for ã(t) with the Hubble constant
H̃0, the deceleration parameter q̃0 and s̃0 calculated with
regard to fluctuations. It is natural to assume that the
Hubble constant does not depend on the fluctuations (73),
i.e. H̃0 = H0. This assumption is based on astrophysical
observations which do not record the necessity to modify
the classical conception of the Hubble’s law. With regard
to these facts from (74) and the corresponding series for
ã(t) we obtain(

∆a(t)
a0

− ∆a0
a20

a(t)
)(

1 +
∆a0
a0

)−1
(75)

= −1
2
(q̃0 − q0)H2

0∆t
2 +

1
6
(s̃0 − s0)H3

0∆t
3 + . . .

Integrating (75) with respect to t from t1 to t0, where
|t0 − t1| < Rc (Rc is the radius of convergence of the
series), we have(

∆a
t

a0
− ∆a0

a20
at

)(
1 +

∆a0
a0

)−1

= −1
6
(q̃0 − q0)H2

0 (t0 − t1)2

− 1
24

(s̃0 − s0)H3
0 (t0 − t1)3 + . . . (76)

Here at and ∆a
t
are the time averages of the values a(t)

and ∆a(t) over the interval [t1, t0]. Using the Einstein
equations the parameter s0 can be expressed in terms of
q0, Ω0 and pressure p0. Assuming that |Ω̃0−Ω0| 	 1 and
|p̃0 − p0| 	 1, we find

s̃0 − s0 = −(q̃0 − q0). (77)

For the instant of time when the universe is in a state
with large quantum numbers, the mean 〈a〉 may be put
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equal to the classical value a0. Then according to (73) it
is natural to accept

∆a
t
= ∆a0 =

√
〈a2〉 − 〈a〉2 and at ≈ a0

2
. (78)

Then up to the discarded terms in (76)

q̃0 = q0 − 3
H2
0 (t0 − t1)2

∆a0
a0

(79)

×
(
1 +

∆a0
a0

)−1(
1 − 1

4
H0(t0 − t1)

)−1
.

Using the wavefunction (29) from (78) we find that for the
state with large quantum numbers the fluctuations

∆a0
a0

=
1√
3
. (80)

For such fluctuations

q̃0 = q0 − 1.1
H2
0 (t0 − t1)2

1

1 − 1
4
H0(t0 − t1)

. (81)

For a numerical estimation in (t0 − t1) one can take the
age of the Universe. For the modern value t0−t1 = 14Gyr
[4] and H0 = 65 km s−1Mpc−1 [37,38] we obtain

q̃0 = q0 − 1.7. (82)

The parameter q0 corresponds to the case when the fluc-
tuations ∆a0 = 0 and according to (72) it equals q0 =
〈q〉 = 1. As a result we find

q̃0 = −0.7. (83)

This value takes into account the presence of quantum
fluctuations of the metric and it is in good agreement with
SNe Ia observations [7,8].

Let us note that for the used values of the Hubble con-
stant and age of the Universe H0(t0− t1) < 1 and conver-
gence of the series (76) is not violated (see AppendixB).

Thus, the observed accelerated expansion can be ex-
plained without implication of any additional concepts
about the matter-energy structure of the Universe con-
sidering this acceleration as a macroscopic manifestation
of its quantum nature. In any case, at least a part of it
may be caused by quantum fluctuations of the considered
type.

The represented calculations relate to the universe
with large quantum numbers. In the preceding epoch the
Hubble constant and fluctuations∆a took different values.
If one assumes, for example, that the relationH2(t−t1)2 ∼
h2 holds for earlier instants of time t, in the epoch with
h ∼ 1 the universe have to be decelerated if the fluctua-
tions ∆a < 〈a〉/3. For a more accurate calculation of the
deceleration parameter of the universe in such states the
averaging in (73) must be performed over the wavefunc-
tions ψE which take into account that the variables a and
φ in (19) are not separated in general.

4 Concluding remarks

The main constructive element of our model which allows
one to avoid most of the cosmological problems is the idea
that E increased during the evolution of the Universe.
The quantity E determines the energy-momentum tensor
of radiation and can be found as an eigenvalue for (19).
The above numerical estimations of the parameters of the
quantum universe filled with radiation and a scalar field
show that the averaged massive scalar field used instead
of the aggregate of real physical fields mainly correctly
describes the global characteristics of our Universe. It ef-
fectively includes visible baryon matter and dark matter.
The kinetic energy term of the scalar field provides the
modern value of the total energy density of the universe
which is very close to the critical value. The status of the
field φ changes as we go over from one stage of the evolu-
tion of the universe to another. In the early universe, the
field φ ensures a non-zero value of the vacuum-energy den-
sity due to V (φ) values at which (21) for ϕε(a, φ) admits
non-trivial solutions in the form of quasistationary states.
In a later era, when the field φ descends to a minimum of
the potential V (φ) and begins to oscillate about this min-
imum, it appears to be a source of the particles of some
averaged matter filling the visible volume of the universe,
which has linear dimensions on the order of ∼ 〈a〉. The
galaxies, their clusters, and other structures in the Uni-
verse are subject to quantum fluctuations (due to the fi-
nite widths of the quasistationary states) that have grown
considerably.

The quantum fluctuations which specify the spread of
the wavefunction of the universe in space of the scale fac-
tor can ensure the accelerated expansion of the universe.
In this sense they manifest themselves similar to dark en-
ergy. The theory gives the value of the deceleration param-
eter q = 1 (the universe is slowing down) for essentially a
classical cosmological macrosystem and predicts q ≈ −1
(the universe is speeding up), explaining the accelerated
expansion as a macroscopic manifestation of the quantum
nature of the universe.
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Appendix A

According to the general approach (see e.g. [31,39]) the
detailed angular structure of the CMB anisotropy can be
characterized by the two-point correlation function

C(ϑ) =
〈
δT(e1)

T
δT(e2)

T

〉
Ω′
, (A.1)

where ϑ is the angle between the directions e1 and e2 in
which the anisotropy is observed and the average goes over
all points on the celestial sphere separated by an angle ϑ. If
one supposes that ε-perturbations are distributed in space
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along the directions e, then according to (35) and (39) for
V 1/2t 	 1 the fluctuations of temperature in (A.1) can be
written in the form

δT(e)
T

= −1
4

t

2
√
ε− t

δε(e)
ε

. (A.2)

From this it follows that the correlation function C(ϑ) up
to a multiplier depending on time will be determined by〈

δε(e1)
ε

δε(e2)
ε

〉
Ω′

=
∞∑

l=2

Q2l Pl(cosϑ). (A.3)

Here Pl is a Legendre polynomial,

Q2l =
1
4π

l∑
m=−l

|alm|2 (A.4)

are the multipole moments, and the coefficients alm are

alm =
∫

dΩ
δε(e)
ε

Y ∗
lm(e), (A.5)

where Ylm is a spherical harmonic, and the integral is
taken over all directions in space. Specifying the form of
the distribution δε(e)/ε we can calculate the correlation
function (A.1).

Appendix B

The first omitted term of the series (76) has the form

1
120

(r̃0 − r0)H4
0 (t0 − t1)

4
, (B.1)

where r0 ≡ (1/H4
0 )(∂

4
t a/a)0 and similarly for r̃0. In order

to estimate it we shall suppose as in Sect. 3.8 that the
energy densities ρ0, ρ̃0 and pressures p0, p̃0 slightly differ
from each other. Then we obtain that the ratio∣∣∣∣∣∣∣

1
120

(r̃0 − r0)H4
0 (t0 − t1)

4

1
24

(s̃0 − s0)H3
0 (t0 − t1)

3

∣∣∣∣∣∣∣ ≈ 0.06. (B.2)

This value must be compared with the ratio∣∣∣∣∣∣∣
1
24

(s̃0 − s0)H3
0 (t0 − t1)

3

1
6
(q̃0 − q0)H2

0 (t0 − t1)
2

∣∣∣∣∣∣∣ ≈ 0.23 (B.3)

of the first two terms of the series (76). These estimations
show that the value q̃0 ≈ −0.7 can be considered as reli-
able.
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